Automatic Object Extraction from Electrical Substation Point Clouds

نویسندگان

  • Mostafa Arastounia
  • Derek D. Lichti
چکیده

The reliability of power delivery can be profoundly improved by preventing wildlife-related power outages. This can be achieved by insulating electrical substation components with non-conductive covers. The manufacture of custom-built covers requires as-built models of the salient components. This study presents new, automated methodology to recognize key components of electrical substations from 3D LiDAR data acquired using terrestrial laser scanning. The proposed methodology includes six novel algorithms to recognize key components (fence, cables, circuit breakers, bushings and bus pipes) of electrical substations. Three datasets with different resolutions and configurations are used in this study. A Leica HDS 6100 laser scanner was used to acquire the first dataset and a Faro Focus3D laser scanner was employed to collect the second and third datasets. The obtained results indicate that 178 and 171 out of 181 electrical substation elements were successfully recognized in the first and second dataset, respectively, and 183 out of 191 components were identified in the third dataset. The results also demonstrate that an average 97.8% accuracy and average 98.8% precision at the point cloud level can be achieved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Object-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images

As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...

متن کامل

3D Detection of Power-Transmission Lines in Point Clouds Using Random Forest Method

Inspection of power transmission lines using classic experts based methods suffers from disadvantages such as highel level of time and money consumption. Advent of UAVs and their application in aerial data gathering help to decrease the time and cost promenantly. The purpose of this research is to present an efficient automated method for inspection of power transmission lines based on point c...

متن کامل

Automatic Road Detection and Extraction From MultiSpectral Images Using a New Hierarchical Object-based Method

Road detection and Extraction is one of the most important issues in photogrammetry, remote sensing and machine vision. A great deal of research has been done in this area based on multispectral images, which are mostly relatively good results. In this paper, a novel automated and hierarchical object-based method for detecting and extracting of roads is proposed. This research is based on the M...

متن کامل

Methods for LiDAR point cloud classification using local neighborhood statistics

LiDAR data are available in a variety of publicly-accessible forums, providing high-resolution, accurate 3dimensional information about objects at the Earth’s surface. Automatic extraction of information from LiDAR point clouds, however, remains a challenging problem. The focus of this research is to develop methods for point cloud classification and object detection which can be customized for...

متن کامل

Extraction of Building Boundary Lines from Airborne Lidar Point Clouds

Building boundary lines are important spatial features that characterize the topographic maps and three-dimensional (3D) city models. Airborne LiDAR Point clouds provide adequate 3D spatial information for building boundary mapping. However, information of boundary features contained in point clouds is implicit. This study focuses on developing an automatic algorithm of building boundary line e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Remote Sensing

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2015